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A B S T R A C T   

Purpose: To evaluate visually and quantitatively the performance of a deep-learning-based super-resolution (SR) 
model for microcalcifications in digital mammography. 
Method: Mammograms were consecutively collected from 5080 patients who underwent breast cancer screening 
from January 2015 to March 2017. Of these, 93 patients (136 breasts, mean age, 50 ± 7 years) had micro-
calcifications in their breasts on mammograms. We applied an artificial intelligence model known as a fast SR 
convolutional neural network to the mammograms. SR and original mammograms were visually evaluated by 
four breast radiologists using a 5-point scale (1: original mammograms are strongly preferred, 5: SR mammo-
grams are strongly preferred) for the detection, diagnostic quality, contrast, sharpness, and noise of micro-
calcifications. Mammograms were quantitatively evaluated using a perception-based image-quality evaluator 
(PIQE). 
Results: All radiologists rated the SR mammograms better than the original ones in terms of detection, diagnostic 
quality, contrast, and sharpness of microcalcifications. These ratings were significantly different according to the 
Wilcoxon signed-rank test (p <.001), while the noise score of the three radiologists was significantly lower (p 
<.001). According to PIQE, SR mammograms were rated better than the original mammograms, showing a 
significant difference by paired t-test (p <.001). 
Conclusion: An SR model based on deep learning can improve the visibility of microcalcifications in mammog-
raphy and help detect and diagnose them in mammograms.   

1. Introduction 

Breast cancer accounts for 24.5% of all cancer cases and 15.5% of 
cancer deaths in women globally [1]. Mammography is the most com-
mon breast screening test that can effectively reduce breast cancer- 
related mortality by aiding appropriate diagnosis and timely treatment 
[2]. One of the critical mammogram signs in breast cancer is the finding 
of microcalcifications. They can be observed on mammograms in 30%– 

50% of breast cancers but are often smaller than approximately 500 μm 
[3–5]. Microcalcifications are the most indistinct image findings that 
indicate breast cancer. Because detecting such subtle lesions is a big 
burden for radiologists, techniques improving visibility of micro-
calcifications could be helpful in clinical practice. 

Recently, the application of convolutional neural networks (CNNs), a 
field of deep learning (DL) [6,7], has led to dramatic improvements in 
radiology [8,9]. A DL-based super-resolution (SR) technique can 
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estimate high-resolution output images from low-resolution input im-
ages. Most SR models increase resolution using acquired features be-
tween the original and low-resolution image. These images are then 
quantified by metrics such as structural similarity (SSIM) and peak 
signal-to-noise ratio (PSNR), and various studies have demonstrated the 
extent to which the resolution of the original images can be restored by 
applying the SR model [10,11]. 

In this study, we hypothesized that adapting the SR model to original 
mammograms may improve the visibility of microcalcifications. Full- 
reference image quality metrics such as SSIM and PSNR are not avail-
able because this SR mammogram has no ground truth image for 
reference. So we evaluated the SR mammogram by visual assessment of 
four breast radiologists and by perception-based image-quality evalu-
ator (PIQE) [12], one of the non-reference image-quality metrics. PIQE 
has been used to assess medical images as a quantitative metric [13]. 

To the best of our knowledge, no study has evaluated SR mammo-
grams by visual rating or PIQE. This study aimed to assess visually and 
quantitatively SR mammograms based on deep learning. 

2. Materials and methods 

2.1. Datasets 

Mammograms were collected retrospectively from April 2014 to 
March 2017 from patients who underwent mammography screening at 
MedCity21, an advanced medical center for preventive medicine 
established by Osaka City University Hospital. We extracted all mam-
mograms with all types of microcalcifications reported by breast radi-
ologists. As the study included patients who visited the institution for 
the first time, none of the datasets overlapped. Both left and right 
mediolateral oblique and craniocaudal images were collected if avail-
able. All examinations were performed using a single dedicated 
mammography system (Selenia Dimensions 2D/3D; Hologic Inc. Marl-
borough, MA, USA). All mammograms had the same pixel size. Fig. 1 
shows a flowchart of patient selection. This study complies with the 
declaration of Helsinki. The ethics board at our institution comprehen-
sively reviewed and approved the study protocol. Since the mammo-
grams were acquired during daily clinical practice, the need for 
informed consent was waived by the ethics board. 

2.2. Super resolution model 

We used a fast SRCNN (FSRCNN), one of the primary SR models 
[14,15] and trained it by ImageNet dataset (non-medical images). The 
FSRCNN is a redesigned SRCNN that achieves a faster and better 
structure. It includes five major CNN steps, which reduce each layer’s 
size compared to SRCNN. Fig. 2 shows the FSRCNN architecture. To 

reduce smoothing effects, we modified FSRCNN to apply 2 × 2 pixel 
binning to generate low-resolution images in training. The model was 
trained for 100 epochs, and the learning parameters were adopted at the 
lowest value of the validation loss function, the mean squared error. 
Adam [16], widely used as a learning rate optimizer, was run. 

As above, FSRCNN is made of five parts: the feature extraction, 
shrinking, mapping, expanding, and deconvolution layers. First, 
FSRCNN performs feature extraction by 5 × 5 layer on the original low- 
resolution image without interpolation. Then, as a shrinking step, the 
transformation reduces the feature maps. Third, as a nonlinear mapping, 
this model replaces the 1 × 1 layer with multiple 3 × 3 layers. Next, as 
the expanding layer, a 1 × 1 layer is executed to increase the number of 
feature maps. The final part is a deconvolution layer that reconstructs 
the image using a 9 × 9 filter. From shrinking step to expanding step, 
narrow layers instead of a single wide layer can reduce the number of 
operations, achieving a faster model than SRCNN. Deconvolution is an 
upsampling technique by the inversed convolution, which is known to 
yield higher PSNR. We utilized the highest performance parameters in 
the original model [15]. The activation function after each convolution 
layer was the Parametric Rectified Linear Unit (PReLU). The detailed 
code is available in MATLAB version 9.6 (MATLAB; The MathWorks Inc, 
Natick, MA, USA). 

2.3. Visual assessment 

We applied the FSRCNN model to all mammograms included ac-
cording to eligibility. These SR mammograms were evaluated indepen-
dently by four board-certified breast radiologists (reader 1, 7 years of 
experience; reader 2, 15 years of experience; reader 3, 14 years of 
experience; and reader 4, 12 years of experience in breast radiology). 
The images were anonymized during extraction, and no patient infor-
mation was displayed on the images. We defined the original mammo-
gram as the reference and the SR image as the target mammogram. Then 
radiologists compared the target mammogram with the reference 
mammogram based on 14 criteria: detection of calcifications, diagnostic 
quality of calcifications, visibility of breast density, contrast between 
calcifications and surrounding tissue, contrast in general images, noise 
of calcifications, noise in general, sharpness of calcifications, sharpness 
in general, pectoral muscle visibility, nipple visibility, skin visibility, 
artifacts, and overall image quality. 

The definitions of main criteria are as follows: contrast is defined as 
the spread of the distribution of each image’s pixel values in computer 
vision. The image’s contrast increases when the difference between the 
largest and smallest pixels is vast. Noise is a component introduced 
irregularly during the input or processing of images and appears as 
fluctuations in pixel values. When noise increases in an image, it pro-
duces more unwanted signals, such as random variations in color or 

Fig. 1. Flowchart of patient selection and demographics. US – ultrasound.  
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brightness. Sharpness is the degree of change in luminance near the 
edge. When this change is abrupt, the image is sharp or appears blurry 
otherwise. 

In addition, we defined the detection of microcalcifications is how 
easily the radiologists notice microcalcifications. The definition of the 
diagnostic quality of microcalcifications is how easily each reader di-
agnoses the microcalcifications. The items such as the visibility of breast 
density, pectoral muscles, and nipples mean whether each soft tissue has 
good visibility or not. Artifact is whether artifacts in the image pro-
cessing are visible or not. Overall scores tell whether the whole image is 
preferable or not. 

Each criterion was rated on a 5-point numerical rating scale (from 1 
to 5), where 1 indicates that the conventional mammogram was strongly 
preferred, 5 that the SR mammogram was strongly preferred, and 3 that 
there was no difference between the images. The evaluation was per-
formed using a 10-megapixel mammography display (RadiForce 
GX1030; EIZO, Tokyo, Japan). Readers could adjust the window and 
level settings, zoom, and pan. A comment field was available for each 
reader to report pseudo-lesions or imaging problems. 

2.4. Quantitative assessment 

We used perception-based image quality evaluator (PIQE) as a 
quantitative metric [12]. This index ranges from 0 to 100, where 100 is 
lowest worst score. PIQE is a no-reference image quality score by 
measuring the local variance of the perceived distorted blocks in an 
image. The PIQE algorithm works by estimating the local variance of in- 
block distortions in an image or pooling the estimated block-level dis-
tortions for overall image quality evaluation. The level of distortion is 
calculated using an average subtraction contrast normalization factor 
coefficient. Then a threshold is applied to the estimated distortion level 
to classify the block as distorted or undistorted. As the average of the 
scores from the distorted block, PIQE is obtained. It is an unsupervised 
method that does not require a trained model. We calculated the PIQE 
for both original and SR mammograms and analyzed them. 

2.5. Statistical analysis 

The Wilcoxon’s signed-rank test was performed to assess the signif-
icance of the differences between visual ratings in reference to a similar 
study using a 5-point scale [17]. For the null hypothesis, a representative 
score was defined as 3, and the difference was significant the further 
away each reader’s score was from it. A paired t-test was performed to 
compare the PIQE values between the SR and original mammograms. 
The null hypothesis is no difference in PIQE scores between each image. 
All the statistical tests were two-sided with a significance level of 0.05 
and performed using R version 3.6.0 (R; R Foundation for Statistical 
Computing, Vienna, Austria). 

3. Results 

3.1. Patient and mammography characteristics 

Among the 5080 patients who underwent breast cancer screening, 
we extracted 93 patients (136 breasts; mean age, 50 ± 7 years) with 
findings of microcalcifications and suspicious morphology in the 
reporting system (Table 1). Microcalcifications in the bilateral breasts 
were observed in 43 patients. Ten patients were biopsied, and 7 were 
diagnosed with breast cancer (Fig. 1). One patient had fatty, 17 had 
scattered, 73 had heterogeneously dense, and 2 had extremely dense 
breasts. Regarding the morphology of calcifications, 56 were amor-
phous, 31 were fine pleomorphic, 5 were coarse heterogeneous, and 1 
was fine linear. Regarding distribution, 23 were categorized as diffused, 
48 as regional, 19 as grouped, 2 as segmental, and 1 as linear calcifi-
cation. Referring to the Breast Imaging Reporting and Data System (BI- 
RADS®) [18], none was classified as category 1, 49 as category 2, 42 as 
category 3, 1 as category 4, and 1 as category 5. According to the 
reporting system, we tabulated all findings of mammograms. 

3.2. Visual and quantitative assessment 

Table 2 summarizes the visual results for each evaluation criterion. 
All radiologists scored > 3 points for detection, diagnostic quality, 
contrast, and sharpness of microcalcifications. These criteria were 

Fig. 2. Structure of the super-resolution model This figure demonstrates the network structures of FSRCNN. A convolutional layer is denoted as Conv (f, n, c), 
where f, n, and c represent the filter size, number of filters, and number of channels, respectively. Deconv indicates the deconvolutional layer. In the shrinking step, 
the number of feature maps was reduced from 56 to 12. In the expanding layer, the number of feature maps increased from 12 to 56. There were four mapping layers. 
In the training of our model, low-resolution images were generated through 2 × 2 pixel binning. 

Table 1 
Patient demographics  

Characteristics Value 

No. patients 93 
Mean age ± SD, years 50 ± 7.6 
No. patients with only MLO view 11 
No. breasts with microcalcifications 136 
Morphology of calcification  

Amorphous 56 
Fine pleomorphic 31 
Coarse heterogeneous 5 
Fine linear 1 

Distribution of calcification  
Diffused 23 
Grouped 19 
Regional 48 
Segmental 2 
Linear 1 

BI-RADS category  
1 0 
2 49 
3 42 
4 1 
5 1 

Mammary glands density  
Almost entirely fatty 1 
Scattered dense 17 
Heterogeneously dense 73 
Extremely dense 2 

SD, standard deviation; MLO, mediolateral oblique; BI-RADS, Breast 
Imaging Reporting and Data System. 
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Table 2 
Visual assessments for original and SR mammogramsa, b (n = 136 breasts)   

1 2 3 4 5 mean p value  

Detection of microcalcifications         
Reader1 0 0 31 55 50  4.140  <0.001 *** 
Reader2 0 0 1 135 0  3.993  <0.001 *** 
Reader3 0 0 1 135 0  3.993  <0.001 *** 
Reader4 0 0 63 73 0  3.537  <0.001 *** 
Diagnostic quality of microcalcifications         
Reader1 0 2 21 60 53  4.206  <0.001 *** 
Reader2 0 0 3 133 0  3.978  <0.001 *** 
Reader3 2 3 2 129 0  3.897  <0.001 *** 
Reader4 0 0 105 31 0  3.228  <0.001 *** 
Visibility of breast density         
Reader1 0 15 100 17 4  3.074  0.143  
Reader2 0 0 136 0 0  3.000  1.000  
Reader3 0 9 0 127 0  3.868  <0.001 *** 
Reader4 0 0 136 0 0  3.000  1.000  
Contrast of microcalcifications         
Reader1 0 3 13 51 69  4.368  <0.001 *** 
Reader2 0 0 2 0 134  4.971  <0.001 *** 
Reader3 2 3 2 129 0  3.897  <0.001 *** 
Reader4 0 0 58 78 0  3.574  <0.001 *** 
Contrast in general         
Reader1 0 0 30 76 30  4.000  <0.001 *** 
Reader2 0 1 0 135 0  3.985  <0.001 *** 
Reader3 0 0 0 136 0  4.000  <0.001 *** 
Reader4 0 0 135 1 0  3.007  1.000  
Noise of microcalcifications         
Reader1 1 53 75 7 0  2.647  <0.001 *** 
Reader2 0 136 0 0 0  2.000  <0.001 *** 
Reader3 0 131 0 1 4  2.103  <0.001 *** 
Reader4 0 2 133 1 0  2.993  0.773  
Noise in general         
Reader1 0 31 97 8 0  2.831  <0.001 *** 
Reader2 0 132 4 0 0  2.029  <0.001 *** 
Reader3 0 136 0 0 0  2.000  <0.001 *** 
Reader4 0 96 40 0 0  2.294  <0.001 *** 
Sharpness of microcalcifications         
Reader1 0 1 10 63 62  4.368  <0.001 *** 
Reader2 0 2 2 132 0  3.956  <0.001 *** 
Reader3 0 7 0 129 0  3.897  <0.001 *** 
Reader4 0 1 37 98 0  3.713  <0.001 *** 
Sharpness in general         
Reader1 0 0 20 85 31  4.081  <0.001 *** 
Reader2 0 0 136 0 0  3.000  1.000  
Reader3 0 0 0 136 0  4.000  <0.001 *** 
Reader4 0 0 134 2 0  3.015  0.346  
Visibility of pectoral muscles         
Reader1 14 63 46 12 1  2.434  <0.001 *** 
Reader2 0 0 128 0 0  3.000  1.000  
Reader3 0 136 0 0 0  2.000  <0.001 *** 
Reader4 0 0 130 0 0  3.000  1.000  
Visibility of nipples         
Reader1 32 91 10 3 0  1.882  <0.001 *** 
Reader2 0 5 131 0 0  2.963  <0.05 * 
Reader3 0 136 0 0 0  2.000  <0.001 *** 
Reader4 0 0 136 0 0  3.000  1.000  
Visibility of skin         
Reader1 4 105 26 1 0  2.176  <0.001 *** 
Reader2 0 0 136 0 0  3.000  1.000  
Reader3 0 136 0 0 0  2.000  <0.001 *** 
Reader4 0 0 136 0 0  3.000  1.000  
Artifacts         
Reader1 0 7 129 0 0  2.949  <0.05 * 
Reader2 0 0 136 0 0  3.000  1.000  
Reader3 0 0 136 0 0  3.000  1.000  
Reader4 0 0 136 0 0  3.000  1.000  
Overall scores         
Reader1 0 1 30 59 46  4.103  <0.001 *** 
Reader2 0 0 130 6 0  3.044  <0.05 * 
Reader3 0 3 9 124 0  3.890  <0.001 *** 
Reader4 0 0 135 1 0  3.007  1.000   

a Score based on a 5-point scale (1 = original images strongly preferred, 2 = original images somewhat preferred, 3 = no preference, 4 = SR images somewhat 
preferred, 5 = SR images strongly preferred). Significance level: *p < 0.05; **p < 0.01; ***p < 0.001. 

b Readers 2 and 4 judged the visibility of pectoral muscles for eight and six breasts, respectively, to be unreadable (NA = 8, 6). 
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significantly different according to the Wilcoxon signed-rank test (p 
<.001). The overall score of three of the four readers was also signifi-
cantly higher (p <.05). The score for microcalcification noise was 
significantly low (p <.001). Typical structures, such as the skin, pectoral 
muscles, and nipples, were assigned low scores by some readers. There 
was a slight difference in the artifacts’ scores. No pseudo lesion was 
reported. There was no marked correlation between the years of expe-
rience of the readers and their evaluation tendencies. Fig. 3 shows ex-
amples of images rated higher overall, whereas Fig. 4 shows examples of 
images rated lower by some readers. Each figure suggests that while the 
SR images had higher contrast, the noise increased, especially in the 
enlarged images. 

The mean PIQE of the original mammograms was 12.4 ± 5.0, and the 
PIQE of the SR mammograms was 3.2 ± 1.3, showing a significant dif-
ference by paired t-test (p <.001). Table 3 summarizes the PIQE results. 

4. Discussion 

In this study, we created SR mammograms by applying a DL-based 
SR model to original mammograms. Then we evaluated them visually 
and quantitatively. SR mammograms were visually superior to original 
mammograms in terms of primary criteria, except for noise. PIQE value 
of SR mammograms was significantly better than that of the original 
mammograms. 

Notably, all readers scored ≥ 3 for the detection of micro-
calcifications on SR mammograms. It indicates that the method can 
increase the reader’s detectability for microcalcifications in clinical 
practice. Diagnostic quality, contrast, and sharpness of 

microcalcifications were higher for SR mammograms than for original 
mammograms. It was probably because the SR model clearly defined the 
microcalcification edges, making it easier to distinguish them from the 
surrounding tissue. However, the noise rating was low for both micro-
calcifications and the entire image. 

To the best of our knowledge, this is the first study to visually 
evaluate mammogram microcalcifications using a DL-based SR model. 
SR models on medical images have been previously reported [19,20]. 
PSNR and SSIM were often used as evaluation indices [21,22]. These 
were calculated using both reference images and images created by the 
SR models. Although the SSIM and PSNR are appropriate for overall 
image evaluation, they cannot be calculated without reference images. 
In addition, they are not suitable for local evaluation. To compensate for 
these shortcomings, we should rate microcalcification visually and 
calculate PIQE as a quantitative value. PIQE is an unsupervised method 
and non-referenced image quality metrics. SR mammograms showed 
lower PIQE, indicating the better quality of the image. It uses the mean 
subtracted contrast normalized coefficient to calculate scores of block- 
by-block distortions in images. Thus, PIQE may be consistent with vi-
sual image rating because it focuses on the local features, imitating 
human behavior [12]. 

Next, the SR model based on CNN inputs the low-frequency 
component image and estimates the high-frequency component image. 
The SRCNN uses the bicubic method to create low-resolution images 
[14]. However, this mechanism has room for improvement. The bicubic 
method can cause an undesirable smoothing effect. To suppress it, we 
used FSRCNN [15] without linear interpolation. In training, 2 × 2 
binning was performed to generate low-resolution images. Binning is a 

Fig. 3. Examples of highly evaluated mammograms Super-resolution mammograms (A, C) and original mammograms (B, D) of a 48-year-old woman. Diffuse 
punctate calcifications were classified as BI-RADS category 2. The area circumscribed by the square in B is magnified by six times in C and D. Original mammograms 
show diffuse calcifications, mainly amorphous or fine pleomorphic. SR mammograms show a more evident contrast between calcifications and surrounding tissue. 

T. Honjo et al.                                                                                                                                                                                                                                   



European Journal of Radiology 154 (2022) 110433

6

non-linear technique for merging adjacent pixels into one larger pixel 
and can reduce the number of pixels and facilitate image processing. 
Besides, binning increases the signal-to-noise ratio to provide better 
contrast [23]. It may have increased the contrast score and decreased the 
noise rating. 

Moreover, this SR model can be applied to other radiological images, 
such as chest radiographs, CT images, and MR images, because it was 

trained with general images and not medical ones. The SR model 
described here does not require any changes in the mammography 
equipment. Therefore, another advantage is that this model can be 
implemented directly in the picture archiving and communication sys-
tems. Although it was possible to utilize down-sampled mammograms in 
training, we chose merits that we could prepare for sufficient data and 
adapt our model to other modalities avoiding overfitting. This tech-
nology may ease the strain on radiologists because interpreting tiny 
microcalcifications is a heavy task for radiologists. This burden can 
cause errors with ≥ 10% of detectable cancers missed [24], and misdi-
agnosis of the mammography is the most significant cause of lawsuits in 
radiology in the US [25]. Our SR model can process a mammogram 
within a minute, minimizing the reader’s burden with dense breasts 
where calcifications are challenging to detect. This model is also 
applicable to non-calcified lesions. While mammograms with masses, 
asymmetries, and distortions can show better resolution by the SR 
model, it may be the most effective for indistinct microcalcifications. 

This study has several limitations. First, whether the SR model can 
help radiologists determine a diagnosis closer to the pathological diag-
nosis has not yet been investigated. Furthermore, whether calcifications 
are more easily detected in a prospective clinical breast cancer screening 
trial remains unknown. Additionally, overdiagnosis and overtreatment 
may occur if microcalcifications are easily detected. We believe a study 
that more closely mimics a clinical setting should be undertaken. 
Moreover, although each reader was not informed about the differences 
between SR and original mammograms, they may have distinguished 
them by resolution, which may have introduced bias that affected the 
results. In addition, mammograms were obtained at a single institution. 
Our SR model trained by general images is adjustable regardless of 

Fig. 4. Examples of low rated mammograms Super-resolution mammograms (A, C) and original mammograms (B, D) of a 44-year-old woman. Grouped and fine 
pleomorphic calcifications were classified as BI-RADS category 3. The area indicated by the arrowhead in B is magnified by six times in C and D. Contrast was more 
evident in the SR images, but the noise was noticeable in the post-processed images. The patient was followed up only with ultrasonography. 

Table 3 
PIQE assessments for the original and SR mammograms   

Original mammograms SR mammograms 

Total 12.36 ± 5.03 3.2 ± 1.33a 

Mammary glands density   
Almost entirely fatty 12.93 6.25 
Scattered dense 13.16 ± 4.3 2.68 ± 0.98 
Heterogeneously dense 11.81 ± 4.79 3.33 ± 1.35 
Extremely dense 22.81 ± 2.63 1.8 ± 0.33 

Morphology of calcification   
Amorphous 13.07 ± 5.21 2.97 ± 1.21 
Fine pleomorphic 11.52 ± 4.59 3.54 ± 1.47 
Coarse heterogeneous 8.01 ± 2.68 4.4 ± 1.36 
Fine linear 10.82 ± 0.76 2.55 ± 0.34 

Distribution of calcification   
Diffused 12.18 ± 4.28 3.22 ± 1.43 
Grouped 11.79 ± 4.8 3.42 ± 1.3 
Regional 13.49 ± 5.84 2.86 ± 1.25 
Segmental 10.57 ± 2.4 3.17 ± 1.03 
Linear 8.27 ± 0.97 3.87 ± 1.43 

PIQE, perception-based image-quality evaluator; SR, super-resolution. 
a It showed a significant difference (p <.001). 
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manufacturer, filter, X-ray tube, or dose. However, future multi-center 
studies are warranted. Regarding patient demographics, the most com-
mon calcification morphologies were amorphous and fine pleomorphic. 
Only a few patients had segmental calcification. Thus, further research 
with a larger patient population is necessary. 

5. Conclusions 

We applied the FSRCNN model to mammography with calcifications. 
Then we visually and quantitatively compare pre -and post-processed 
images. Results suggest that our model can help detect and diagnose 
microcalcifications in mammograms. 
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